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ST18OAD, U K  
$ Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel 

Received 16 April 1986 

Abstract. A procedure is developed for assessing the accuracy of a truncated perturbation 
expansion, which leads to upper and lower bounds to some eigenvalue. Improved bounds, 
which require a lower bound to the overlap of the approximate and exact wavefunctions, 
are also considered and a lower bound to the overlap is derived. Two examples are 
presented, using model problems. 

1. Introduction 

It is well known that many perturbation expansions diverge, but that they are actually 
asymptotic expansions so that the first few terms can yield good approximations. A 
full discussion of the convergence difficulties, and of ways of overcoming them by 
using summation techniques such as Pad6 approximants, is given in the review of 
Killingbeck (1977). Here we examine the problem of deciding if a truncated perturba- 
tion series is accurate. As a consequence of our approach, bounds are obtained for 
some energy eigenvalue E ( A )  of the system Hamiltonian H(A) = H,)+ A V .  These 
bounds are derived in 0 2 where the general theory is also given. However, the essentials 
of the theory can be described by truncating the expansion of the wavefunction at first 
order. 

We assume that we have obtained the solutions of the zero- and first-order equations 
of Rayleigh-Schrodinger perturbation theory ( RSPT): 

(Ho-Eo)*o=O (*ol*o) = 1 (1.1) 

( H o -  E,)*I = ( E ,  - V)*o ( * I  I*o) = 0. (1.2) 

These allow us to consider the approximations 

P 
&,,=EO+ AiEi 

i = l  
41 = NI(*O+~*l) (1.3) 

for all p S 3 ,  since CL0, t,hI are sufficient to calculate E2 and E , ,  

E2 = ($1 I W O )  (1.4) 

N I  = ( 1 + A 2 ( ~ l ) ~ I ) ) - 1 ’ 2 .  (1.5) 

E3 = ($1 I ( V -  EI)*I). 

NI is a normalisation constant for the truncated first-order expansion of +, 
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In order to assess the accuracy of our approximations ( 41 ,  F, , )  we consider the 

(1.6) 

and note that if 4I and were exact, 77 = O .  Thus, we expect 77 to be small if 4I and 
E,, are good approximations to the exact solutions IC, and E. Consequently, a good 
test of the approximations (1.3) may be made by examining the value of the norm of 
77, / /  77 I/ = (77  j v ) ” ~ .  Simple calculation now gives 

l l ~ ( 4 1 ,  8 2 ) ) )  = NiA’I[(*iI(V-Ei”$i)-EI]-2AE,E,+A’E~(*iI$i)}”’ (1.8) 
and 

residual 

77(4l, E p )  = ( H,, + A v - ep 141 

ll7(41, E I ) I l =  ~ l ~ ’ ~ $ l l ~ ~ - ~ , ~ ~ ~ l ~ i ”  (1 .7 )  

1 ) ~ ( 4 i ,  E ~ ) I I  = N i A ’ { I [ ( $ i  I (  V -  Eil2+i)- EII -2AEzE,+A’[ES($i \ $ I ) -  Ef] 

+2A3EzE3($i I 4i)+A4E:(+i I+i)}”’.  (1.9) 
We note that 11 7 1 1  is of order A’ in each case, a direct consequence of the fact that 
both C$I and E,, are correct up to order A. The only new integral (beyond the usual 
integrals of RSPT) is seen to be ($, I ( V - I f  A is sufficiently small, it may suffice 
to consider only the lowest-order terms of (1.7)-(1.9). However, in general, there can 
be no certainty that 11q(qblr E ~ ) ~ I  S I ~ T J ( ~ ~ ,  ~ J l l  s llq(4,, el)li even for moderate values 
of A (we recall that in applications of RSPT A is frequently of the order of unity). Thus, 
it will be necessary to calculate l l? / l  for each A of interest. 

2. Bounds and the general theory 

The inner product ( 7  I 77) may also be used to provide upper and lower bounds to some 
eigenvalue of the Hamiltonian H = H,, + A V ,  since, for any normalised approximation 
4 and real parameter p, 

(77  /77)=(C$l(H-p.)24P v2  (2 .1)  
where v 2  is the lowest eigenvalue of (H - -p I2 .  The result (2 .1)  has been used very 
widely with variational wavefunctions since the pioneering work of Weinstein ( 1934) 
and Stevenson and Crawford (1938), but does not seem to have found an application 
when RSPT is used to obtain 4 and p. If p is closer to one desired eigenvalue E than 
to any other eigenvalue of H, then 

vz = ( E  - p y  (2.2) 

This technique always provides bounds to some eigenvalue of H, and if RSPT yields 
good approximations (4, p )  to a particular solution ($, E ) ,  then A 2 ( p )  is small and 
(2.4) gives precise bounds to that E. If, on the other hand, h’(p) is large, the bounds 
will be wide and probably encompass several true eigenvalues. Thus, wide bounds 
provide the information that the truncated RSPT energy series is suspect, even if  
successive partial sums E,, differ very little. 
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Now for any fixed d, the bounding functionsf,(p) are easily shown to be monotonic 

f - ( p O  c f - ( ~ , )  E s f+(~O c . L ( ~ j ) .  (2.5) 

Thus, i t  is always desirable to use two distinct values of p to obtain bounds to E. 
More generally, if the RSPT wavefunction is truncated at order n, the energy 

coefficients are determined up to order ( 2 n  + l ) ,  and we may choose any of the 
approximations 

increasing functions of p so that i f  p,  G p l  

m 

E ,  = Eo+ A'E, 
i = l  1 = 1  

for n S m s (2n + 1). All such approximations yield 1 1  7 I/ of order A ' + I ;  the largest and 
smallest values E ~ ,  E ,  selected from this set of truncated energy expansions yield the 
optimal bounds to E :  

f - ( ~ l ) s  E sf+(&,). (2.7) 

Note that there is no  guarantee that f + ( ~ , )  and J - ( F ~ )  provide bounds to on1-v one 
eigenvalue of H ;  as is usual, rough bounds to the nearest adjacent eigenvalues will 
be required in order to settle this question uniquely. 

However, other choices of p may give better results than (2.7) if suitable bounds 
are available for one of the adjacent energy levels; we explore this possibility in $ 4  
below. 

3. The effect of approximate RSPT solutions 

Our analysis so far is based on exact solutions of the RSPT equations. However, in 
many applications, the higher-order corrections will be estimated, often variationally. 
Such approximate RSPT solutions lead to large values of 1 1  7 1 1  and to additional terms 
in the bounds. As before, the effect can be seen already in first order. 

Suppose we have an approximation 6, to 
of a related equation 

(H,-Eo)Jl=(El-  Q)3" 

an  approach which has found application in 
generally, 4, will be obtained variationally, 
(1930) functional 

G ( 4 I ) = t i l I  v$o)+(rlr,lf) 

the exact $ I .  This might be the solution 

(41 I $0) = 0 (3.1) 

Hartree-Fock PT (Burrows 1973). More 
at the stationary point of the Hylleraas 

($1  I$") = 0 (3.2) 
or of a more general functional (see, for example, Burrows 1974) 

LC6i) = G( 61 1 k T ( _ f  1 f )  (41 I *(I) = 0. (3.3) 

f = ( H o - ~ , ~ ) ~ I - ( E l -  V)&r (3.4) 

Here, 

and the constants k ,  depend on the nearest eigenvalues of Ho above and below E,. 
However 6, has been derived, we have (analogous to (1.3) above) 
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and 

fl, = (1  + A'(J,  1 (3.7) 

so that (for example) 

) I  ~(61, ~ I ) / I  = f l i A { ( f  I f ) +  2 A ( f  1 ( V -  E ,  141) + A'($, 1 ( V -  Ei)'&,)J"' 

s N , A { ( ~  I f ) ' l '  + A ( $ ~  I ( v - E , ) ' I + G , ) ~ / ~ }  (3.8) 

using the Cauchy-Schwarz inequality. 
Since f may be written alternatively 

.f= ( H o -  E" ) (& - $1 (3.9) 

we see that l lv (J l ,  E , ) / I  contains an approximation error term of order A, ( f l f ) " '  in 
addition to the remaining, truncation error terms of order A '  as before. These results 
are easily generalised. 

But if A is not very S I  >all, the contribution of A ( f 1 f ) ' ' '  to l / v / /  may be much 
smaller numerically th< he (formally) higher-order terms. In practice, only the 
numerical value of ~177 1 ,  is of  any real significance. 

4. Overlap bounds and ;*.iproved energy bounds 

The truncated RSPT energy series eP or E ,  will not in general yield optimal energy 
bounds for a given approximate function 4 ,  or 4,,. However, if we regard p as a 
variable parameter and follow the procedure of Cohen and Feldmann (1969), we 
obtain bounds to the kth eigenvalue E ' A '  of H in the form 

Elk 's  1 * 6 6 ? = ( 1  - u ~ ) A ' / u ~  (4.1) 

where 

I = ( 4  I W )  A ' = ( q ! l H ' 4 ) - 1 2  (4.2) 

and ak is the overlap between 4 and the (unknown) exact eigenfunctions $'". (For 
the ground state, we have a better upper bound, 1.) In order to apply these bounds, 
we require a lower bound to ah; this may also be obtained from I /  7 / /  by an extension 
of Weinstein's (1934) procedure. 

We have, for any normalised d and real p, 

where $"' and E"' denote the ith eigenfunction and eigenvalue of H. Focusing attention 
on the kth state, we have 

(4.4) 

provided that p is closer to E'" '  than to any other eigenvalue E"' except E'" .  ( I n  
practice, E'" will generally be either E"-, '  or E"+' )  .) Then we have the lower bound 

a :>  1-1/v1/2/(E(, ' -p)? (4.5) 
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which requires a lower bound to E'" '  i f  p < E""' or an upper bound if p >  E'" ' ' .  
These may be obtained by the methods of 5 2 or by any other means. Furthermore, 
E'" may often be approximated adequately by E:;', the mth eigenvalue of H o .  The 
bound (4 .5) ,  though slightly less accurate than the classic lower bound of Eckart (1930) 
for the ground state, applies to any state. Furthermore, it requires knowledge of only 
a single eigenvalue E'" whereas Eckart's bound requires two, E""  as well as E'". 
Thus, in calculations aimed at esrimating E'",  the bound (4.5) is clearly preferable. 

If ,  as will often be the case for reasonable 4, i t  turns out that a i  3 0.9, we have 
from (4.1) 

E ' h ' 5  I *A13 (4 .6)  
where for the first-order approximation 4 ,  of (1.3) 

I = E,+ A E ,  +A";'( E ~ +  AEJ 
and 

A =  N , A ' { ( @ , ~ (  V-E, ) '~ l ) -Nf (Ez+AE3)2}1 ' '  

(4 .7)  

(4.8) 
Comparison of these expressions with E,, and I /  q ( 4 , ,  E,, ) I /  shows that the main improve- 
ment to the energy bounds arises from the factor ( 1  - a ~ ) " ' / a , .  

5. Some examples 

We first consider a soluble matrix eigenvalue problem, H ( A ) x ( A )  = E ( A ) x ( A )  where 

(5.1) 

- ( b + P A )  yh 0 
H (  A ) = ( a  + a h )  I + 0 

yh ( b + P A )  

I is the unit matrix, and the constants a, b, a,  P and y are all real, while A 2 0. The 
ordered exact eigenvalues are easily found to be 

( U  + a h )  - A  i a + a A )  ( a  + a h )  + A (5 .2)  
where 

A' = ( b  + PA)'( 1 +2t ' )  t =  y A / ( b + P A )  ( 5 . 3 )  
and the normalised ground state eigenvector is 

x T (  A )  = ( A +  ( b  +PA), -2yA,  A - ( b  + P A ) ) / 2 A .  

If H ( A )  is decomposed in the usual way with 
a - b  0 

H = Ho+AV H o = [  a 1. 
0 a + b  

(5 .4)  

( 5 . 5 )  

RSPT yields the leading terms of the appropriate Taylor expansions and, in particular 
for the ground state, 

( 5 . 6 )  E ( A )  = ( a  - b )  + ( a  - P)A - ( y * / b ) A ' +  ( y ? P / b ' ) A ' + .  . . 
which is a convergent series expansion of ( a  + aA ) - A provided 

(5 .7)  
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However, an  alternative decomposition of H ( A )  is found to be more appropriate. 
Thus, writing 

H ( A ) = H o ( A ) + H , ( A )  (5.8) 

leads to the series 

E (  A )  = [ ( a  + aA)  - ( b  + PA)] - ( b  + p A ) r ’ + .  (5.9) 

which is a convergent expansion of ( a  + a A )  - A  provided that 2 r2<  1 (i.e. for all A if 
P ’ >  2y’). Clearly, RSPT based on (5.8) is preferable to the more conventional Taylor 
expansion based on (5.5). The unnormalised eigenvector corresponding to (5.9) is 

x ‘ ( A ) = ( l , O , O ) - t ( 0 ,  I , o ) + . .  . (5.10) 

and because of the symmetry of H , ( A ) ,  all energy coefficients of odd order vanish. 
Thus we need calculate only 

/ 1 7 7 ~ ~ 1 , p ) / I = ( b + P ~ ) ~ ’  (5.11) 

where p is the truncated second-order sum (5.9), yielding the bounds 

( U  + aA) - ( b  +PA)( 1 +2t’) S E ( A )  S ( U  + C I A )  - ( b  + PA). (5.12) 

Here, if the half-width ( b  +PA ) t’ is small by comparison with the truncated sum p, 
we have an  acceptable approximation. Note, however, that the bounds (5.12) are valid 
for all A, and  for all values of the constants in H ( A ) .  

In this model problem, we may calculate the overlap exactly using (5.4) and (5.10): 

a ~ = [ 1 + ( 1 + 2 t ’ ) ’  ‘]/2(1+r’)’/’ (5.13) 

while the lower bound of (4.5), using the zero-order value of E”’= ( a + a A )  (which 
here coincides with its exact value) is 

a i >  1 - t4/(1 + > if 2 t 2 <  I .  (5.14) 

Since this is the ground state, we have the Rayleigh-Ritz upper bound 

E ‘ O ’ S  I = ( U  + a h )  - ( b  +PA)( 1 + 2 t 2 ) / (  1 + t’) (5.15) 

while (4.1) yields the lower bound 

2 I - (1 - ~ i ) ” ~ A / a ” =  ( a  + a h )  - A (5.16) E(O) 

i.e. the exact value of E“’, if a: is exact as in (5.13)f. Alternatively, 

E‘”’> ( a  + a h )  - ( b + p A ) ( l +  t ’ )  (5.17) 

(which coincides with the truncated second-order sum, cf (5.9) above) using the lower 
bound (5.14) to a i .  

Now consider the perturbed harmonic oscillator with Hamiltonian H = H,+ V, 
where 

(5.18) 

t This is in accord with a result of Cohen and  Feldmann (1974); the approximate x of (5.10) is (accidentally) 
a linear combination of two eigenvectors. 
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The exact ground state energy of H is $CY (independent on p )  and the corresponding 
eigenfunction is 

(5.19) 

The excited state solutions cannot be obtained analytically in closed form. 
In table 1, we present truncated RSPT energy series, as well as lower and upper 

bounds from (2.7) based on E >  and E ~ .  The width of the bounds provides a measure 
of the quality of these approximations. (For the ground state, we also have the exact 
energy for comparison.) 

For the ground state ( n  = 0) when CY = 0.1 and p = 0.01, it appears that the perturba- 
tion is large and the RSPT series is clearly not converging rapidly, if at all. In  this case 
the bounds are of opposite sign, but this is a consequence of the fact that the exact 
value is very close to zero. When a = 1 and p = 0.1, the RSPT series provide estimates 
which are qualitatively correct, but the bounds are still wide, reflecting the fact that 
here E2 = -0.017 771 and E3 = 0.020 590 suggesting poor convergence. In all other 
cases, including the two excited state calculations ( n  = 1,2),  the bounds are reasonably 
close, and we may conclude that the RSPT sums give reliable estimates. 

I n  the absence of exact values of E, we would have to adopt the means of the 
better lower and upper bounds, and it is noteworthy that these means generally provide 
very accurate results for the ground state (where direct comparison is possible). For 
convenience, we have indicated the better bounds in each case. 

Although the RSPT equations have been solved exactly for this model problem, it 
is instructive to examine the consequences of using an approximate (variational) 
solution to the first-order equation. For the ground state, the exact first-order solution 
has the form 

(5.20) 

and the dominant contribution arises from the term c4x4. We therefore adopted the 
variational trial form 

(5.21) 

4'" = N exp[ - ( ~ ~ ~ x ~ + & ? . x " ) ] .  

4 ,  = (CO + c.x2 + c4x4 + C 6 X h )  $bo 

l j ,  = (C" + F4X4)4O 

Table 1. Energies of the perturbed oscillator 

Truncated RSPT sums Bounds using 

cy State P E 'I € 2  '3 € 2  € 3  

n = O  1.0 0.01 0.5 0.500 094 0.499 993 0.500 001 0.501 940 0.501 948 
0.498 046 0.498 054 

0.9 0.01 0.45 0.451 844 0.450 112 0.450 007 0.454 471 0.454 364 
0.445 752 0.445 650 

0.8 0.01 0.4 0.408 594 0.401 305 0.400 228 0.423 633 0.422 506 
0.378 977 0.377 951 

1.0 0.1 0.5 0.509 375 0.491 604 0.512 193 0.897 718 0.917 267 
0.085 489 0.107 1 I9 

0.1 0.01 0.05 0.245 844 0.181 723 0.149 513 0.406 887 0.370 531 
-0.043 441 -0.071 504 

n = l  1.0 0.01 1.515656 1.514460 1.514607 1.523673 1.523818 
1.505 246 1.505 395 

n = 2  1.0 0.01 2.562 344 2.556 815 2.557 873 2.584 168 2.585 185 
2.529 461 2.530 560 
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Table 2. The effect of approximate first-order RSPT solutions. 

a = 1, p = 0.01 a = 1, p = 0.1 

Variational Exact Variational Exact 

E l  0.500 094 0.500 094 0.509 375 0.509 375 
€ 2  0.499 993 0.499 993 0.491 650 0.491 604 
p i  0.500 001 0.500 001 0.510 859 0.512 193 
Bounds from 0.498 168 0.498 054 0.146 683 0.107 119 

(2.7) 0.501 826 0.501 940 0.856 332 0.897 7 18 

in the Hylleraas functional (3.2) and in table 2 we present results using both and 
for two cases ( a  = 1,p = O . O l )  and ( a  = l ,p  = O . l )  illustrating the effect in both 

‘small’ and ‘large’ perturbation situations. 
It appears that is an  excellent approximation to $, and also that the approxima- 

tion Nl($n+ 6,) is actually better than the formally superior NI($,+ (the bounds 
are tighter !). 

Overlap bounds for the approximation Nl($o+ &,) may be calculated from (4.5) 
using the zero-order lower bound E r ’  = 2.5 to the second excited state. (This is justified 
since the eigenfunctions of H are of definite parity; the first excited state is necessarily 
odd, whereas the ground state is even.) We thus obtain (using E ? )  

ai 3 0.999 999 a = 1, p = 0.01 

a = 1, p = 0.1 a i  2 0.961 028 

so that the lower bound (4.1) and upper bound I are now much tighter: 

a = 1, p = 0.01 0.499 999 s E‘’’< 0.500 001 

a=1 ,p=0 .1  0.433 6 0 3 s  E‘”G0.510 849. 

Both model problems treated in the present work possess well separated eigenvalues, 
so that our bounds define intervals which contain only a single point of the spectrum. 
Further work will be required to ensure that this remains true in other, more general, 
cases. 
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